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I
1 INTRODUCTION

In all the major textbooks on queueing theory, we see repeated ref,-ence t-
the role of rootfinding in the solution of many of the primary models. A
large number of these models can be solved by other numerically-intensive
procedures which, however, preserve a much closer link to the underlying
stochastic processes. (See especially the work vi Neuts, e.g. 1981.) The point
is often made that the use of transforms and/or generating functions leads
away from probabilistic arguments to the application of analytic function
theory. But much of the "anti-transform" position is directed at the typical
need to find roots to a transcendental or high-degree polynomial equation
in order to finish off a transform solution. It is the common wisdom that
such rootfinding is fraught with critical obstacles, such as difficulties raised
by multiple roots or sharp slopes in the function, so that some roots may
indeed not be found by even the most sophisticated algorithms. However,
it turns out instead that rootfinding in queueing is so well structured that
these problems do not occur. It is the objective of this work to show that the
standard rootfinding problems found in queueing analyses have fundamental
properties that always allow computational solution.

It is important to recognize that the efficient finding of roots is essentially
a three-phase process. First, we need to determine their multiplicity, that
is, whether or not there are any repetitions. Second, roughly, where are the
roots? (It is, for example, quite useful to know how many are inside or on
the unit circle in the complex plane.) And, finally, we need to develop an
effective algorithm and employ it on appropriate hardware to obtain complete
answers within reasonable amounts of time.

2 SOME KNOWN AND BASIC RESULTS

It has already been shown in a number of queueing models that roots arc
unique and that they can easily be obtained numerically. (See Chaudhry
and Templeton, 1983, Chaudhry, Madill and Brire, 1987, and Brire and
Chaudhry, 1987, for example.) We present a short discussion of some of the
more familiar ones here (in no particular order) to illustrate what is already
known and to lay some groundwork (with proofs streamlined) for the more
generic results which follow. Section 3 will provide more complete details on
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root calculation for the critical models under the most extreme of conditions.

2.1 AI/AP()/1

Just about the simplest Markovian queue for which routfinding becomes ger-
mane is the bulk variation of the classic M/M/1 in which service is in fixed
batches of size K (whether or not the server has to wait for a full batch
of size K is irrelevant. The key equation here appears in the denominator
of the queue-length generating function (or, equivalently, as the character-
istic equation when the stationary system-size probabilities are related in
difference-equation form):

PZ- _(p- + l)zK + 1 = 0 (p =A/). (1)

First, we can show under ergodicity (using Rouch6's theorem - see Gross
and Harris, 1985, for example) that this equation has one root of 1, K-1 roots
inside or on the unit circle, and finally one outside the unit circle. This latter
root ultimately determines the values of the stationary probabilities.

Though we do not need to determine the roots inside or on the unit
circle to solve the queueing problem, it is useful to look at them a little

more closely. It turns out that the roots are unique (as first noted by Bailey,
1954), a property quite typical of the kinds of rootfinding problems arising in
stochastic models. This is proven by contradiction, and we start by assuming
that z, € 0 is a repeater. Since the derivative must then vanish at z,, it follows
that

z,'-'[p(K + 1)z, - (p + 1)K] = 0,

thus implying that

K p+l

K+I p

By assumption, we see that z, is a repeated root, and it must be inside
or on the unit circle. But

z, I<_ 1 iff p/K > 1. (2)
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However, this violates the condition for ergodicity. Hence the roots are dis-
tinct. (Of course, we recognize that this is the same construct as that for the
EK/M/1 queue.)

In order to find the root outside the unit circle in this case, you can
observe that it must be real, since it is unique. Moreover, the function is
0 when z = 1 and the derivative of the function is negative in the interval
[1, z], where z° = K(p + 1)/p(K + 1). Hence we need examine only the real
interval greater than z*.

Newton's method finds successively better approximations for the real
root of F(z) = 0 via the equation z(,,+,) = z(,) - F(z(,))/F'(z(,)). A sufficient
condition for convergence of this method is that the first two derivatives be
positive. This is easily shown for our case when z > z*:

F'(z) = zK-1p(i" + 1)z - (p + 1)K]

has both factors positive; and

F"(z) = KzK- 2 [p(K + 1)z - (p + 1)(K + 1)]

is positive when z > (p+ 1)(K - I )/p(K + 1). But this ratio is smaller than z"
and hence the second-order condition for convergence is also satisfied. Thus
it appears that Newton's method, perhaps with a starting value of (p + 1)/p,
is the fastest and easiest way to find the root outside the unit circle. Note
that we wish to avoid z* as a starting point because the derivative vanishes
there. (Since the function is a polynomial, with a second derivative easily
computed, a variant of Muller's method of approximation by a quadratic
might converge even faster.)

A second method for finding the real root outside thc unit circle is a fixed-

point iteration or successive-substitution approach. The original polynomial
expression is rewritten as the (,K + 1)st root of J(p + 1)zK - l1/p and then z
is repeatedly substituted into this expression. A sufficient condition for the
convergence of this method is that the derivative of this (K + 1)st root be
between -1 and 1, so that the mapping truly contracts the domain.

This condition can be proven as follows:

I1(z + l)z' - -+ (p + l)KzKl-

K + 1 P P

*"Is "" N"m I I I I $ 3



K(p + 1) x{1P+1)zKj(K + I)pz -'  '

We then recognize the first factor as z" defined earlier and restrict our atten-
tion only to the interval where z > z*:

f' (z ) = Z*ZK -P + )zK - - I

so that

f'(z) <~K P
(p + 1)zK - 1

PZK <1.

(p + 1)zK - 1

Thus, we see that the condition is satisfied and this approach is also guaran-
teed to converge as long as the starting value exceeds z °.

2.2 M('K)/M/1 or AI/EK/1

Here the characteristic equation whose roots we need to find is given by

pzK+1 - (p + 1)z + 1 = 0. (3)

(Of course, we recognize that the state probabilities can be obtained without
rootfinding by going directly to the usual recurrence relationship building
up from the easily computed po, as in Gross and Harris, 1985, Chapter 3.)
Equation 3 is known to have a root of I and to have the remaining K all
outside the unit circle. As in Section 2.1, the lack of multiplicity can be
verified here.

First, note that since any repeat root must make the deriviative of the
left-hand side of (3) vanish, it follows that z, would be a repeater if

Pf - + I
Z1  p(K+ I)

To determine whether or not z, is a multiple root, we need then to see if it
satisfies (3):

4
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=pz+ (p+ 1)z +=z (P +  +

or
SK+I

Z, K(p + 1)

Thus we need to show that

K(p + 1 p(h + 1)'

or that

[ K'P + lj +1 Kp.

But these two terms cannot be equal since

[K(p + 1) -+ 1 -_KP1K+I
[K +±I K +j 1 K J

>1- (K + 1)(l- K) Kp
K+tI

Thus repetition is not possible and the roots are simple.

The actual estimation of tl,- roots of (3) (or more appropriately, (3) tranis-
formed by u = l/z to get the roots inside the unit circle) can be done nicely

using the Jenkins-Traub (1970) rootfinding algorithm. This is a cubically
convergent application of Newton's method to a rational approximation of
the polynomial. Zeros are calculated in roughly increasing order of moduli,
which are all less than 1 on the inside of the unit circle. This approach works

particularly well because of the isolation of the roots and the fact that defla-
tion once again leaves a polynomial to solve. Purification would be advisable
for large values of K to make the technique work more smoothly.

5
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2.3 M/1D/c

As noted in Gross and Harris (1985), the fundamental root equation for
the M/D/c (or equivalently, the M/D(c)/1) queue is (with the service rate
assumed to be 1)

I - z'exp[A(1 - z)] = 0, (4)

or

Z= ep[-( - z)]. (5)

There are c roots inside and on I z I= 1, one equal to I and the remaining
c-1 inside (see Chaudhry and Templeton, 1983). To show that these c roots
are again distinct, we create a contradiction beginning from the assumption
that z, $ 0 is a repeater. Then the derivative of the left-hand side of (4)
should vanish at z,. The derivative is easily seen to be

(zI exp[( - z,)])(Az,- c),

which can only be 0 if z, = c/A. But this cannot happen since c/A is the
reciprocal of the system utilization, which must be less than 1 for ergodicity,
and therefore z, is outside the unit circle. So the roots inside and on the unit
circle are simple again.

To find the roots, the following technique was originally developed by
Downton (1955), expanded by Powell (1985), and later improved systemat-
ically by Chaudhry together with various collaborators in 1986 and 1987.

Equation 5 is clearly equivalent for all n 1, 2, ... , c to

z - erp[-A( - z)/cjexp(2rni/c), (6)

where i is the squareroot of -1 and exp(27rni/c),n - 1,2,...c, are the c
complex roots of unity. Chaudhry, Madill and Bri~re (1987) have shown
that, for each n, (6) has exactly one root inside the unit circle. Powell (1985)
used Newton's method in his work to find that root; but Chaudhry et al.
have had more (and complete) success using Muller's method, never having
encountered any numerical difficulties. We present more on a similar problem
later.

Further results are available when there is random, bulk input, i.e., when

the model is M(X)/D/c. Equation 5 must now incorporate information on
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the probabilistic nature of the batch-input sizes. This is done through their
probability generating function, say X(z). Then the characteristic equation
becomes

Z = - X(z)]),

with c roots found to be inside and on the unit circle.

2.4 G/A/i and G/EK/1 or G(K)/M/1

The waiting-time distribution function for the general single-server problem
with exponential service requires the lone real root on (0,1) for the (funda-

mental branching process) equation

z Zb z' = *pl-- z)j - O(z)
t=0

where A* is the Laplace-Stieltjes transform (LST) of the interarrival times
and 0 is the probability generating function (pgf) of the arrivals during ser-
vice (see Gross and Harris, 1985). The LST is easily shown to be monotone
nondecreasing and convex, and thus the root is readily obtainable. For exam-
ple, the well-known Newton-Raphson approximation methoi is guaranteed
to converge because of the convexity.

The problem becomes more interesting when Erlang(K) service times are
used instead. Here the roots need to be generally located and then found for

00

zK =E bz - A*(I(-z)] =/3(z) (7)

i=0

or, using z = rexp(iO) and principal values for all log calculations,

KIn(r) + iKO = In{A'[(I -i ,xp(iO))j} + 27rni (8)

for n = ,2,..., K (see Chaudhrv, Madill and Bribre, 1987). There is clearly
a root at unity, and by Rouch6's theorem, we can once again show that there
are K others inside the unit circle I z 1= 1. For each n now, Chaudhry,

Jain and Templeton (1987) note th. t there is a unique root with absolute
value less than 1, using the complex version of the monotonicity and convexity
argument employed for the G/MAI/1.

7



Note that the characteristic equation for the model G(X)/M/1 bears a
great similarity to (7). We know that zK is the probability generating func-
tion of the batch-input-size distribution since the only possible size is iden-
tically K. Rewrite (7) then as

1 = (Z)(l/Z)K.

Then replace the term (l/z)K by the input-size pgf X(z) evaluated at lz,
thus giving the c.e.

1 = (z)X(1/z)

The roots of (8) are found by separately solving its real and imaginary
portions. We know that there is a unique answer when (8) is evaluated for

individual values of n. But prior to this work, it was assumed that roots
obtained in this manner could be the same. We have, however, now been
able to show that repetition is not possible! We provide our proof of this
assertion in Section 3.2.

Partial results on the uniqueness of all the roots for this model type are
available. It is, in fact, known that the roots are totally unique when the
interarrival times are Erlang(J) distributed (see Chaudhry and Templeton,
1983). In this case, Equation 7 becomes

z K = [Jpi(Jp + K(1 - z)] y . (9)

Again, we need to have the derivative vanish at any repeated root, say z,.
This is equivalent to requiring that

Z, ( = (p)J[Jp + K(l - z,)] -(-' '1  (10)

When (9) is divided by (10), we see that.

z, = (Jp + K)/(J + K).

When this value is substituted back into Equation 9, we find that the condi-
tion for repetition is equivalent to requiring that

pC pc+(1 c) (11)

8



The right-hand side of (11) is a straight line in p, with y-intercept of 1-c
and slope of c, while the left-hand side is a simple monomial with integral
power c. The two functions intersect only at p = 1, which would violate the
condition for ergodicity, so that the assumption of repetition must be false.

But not much more has been generally known about the effect of the
form of the interarrival distribution? Chaudhry, Jain and Templeton (1987)
tried the method of Equation 8 on a large number of cases and did not en-
counter any problems. They used the QPACK software package developed
by Chaudhry and his collaborators (Chaudhry, 1988). However, such com-
putational testing clearly cannot be exhaustive. We address this question in
a more complete fashion in Section 3.

The waiting-time distribution function for the G/EK/1 system (see, for
example, Chaudhry and Templeton, 1983) is

K

= I - C E ar~exp[-p(1 - r,)t}/(l - r,)
S=1

where C is the arrival-point probability that there are no phases present, and
the {r.} are the K complex roots inside the unit circle. The mixing constants
{ a,, = 1, 2,..., r} are found by the formula

a. = 1] r, /(r, - 7,1 (r, : r,)

2.5 AI/E()/1, M/G(1 )/1 and EK/G/l
For the more general batch-service system with Poisson input, Erlang(K)
distributed service times and random batch sizes, the characteristic equation
whose roots we reqv!ire is

( P + A - Az)K Y(1/z) - 1 = 0, (12)

where Y(z) is the probability generating function for the random service
batch (defined to have finite support). If we write Y(z) as the polynomial

I"(z) -= y 1 Z + y 2 z' + y 3 Z3 + ... + YbZ b ,

then Equation 12 can be rewritten as

9



= ( + -(1 - 1 (yIzbl + Y2 Zb2' + *.. + Yb).

iI

Clearly, 1 is a root; in addition, K roots are outside the unit circle, while
b- I are inside and on. All of the roots inside are again distinct and easy to
obtain (see, for example, Chaudhry and Templeton, 1983). But, as noted
in our A1/AM(K)/1 discussion, it is the roots outside which are critical. The
model M/IG(Y~/1 is the generalization of the EK service model and has any
number of roots outside the unit circle (e.g., for G=M, there is 1).

Bri~re and Chaudhry (1989) have analyzed in detail relatives of this model
where service is instead either hyperexponential, uniform or constant. Re-
sults are once more quite favorable.

To show the further equivalence of this model type to the EK/G/1, let
Y =K in the Af/G(')/1 and then convert the constant batch size and Pois-
son input over to an Erlang(K) input. The resultant characteristic equation
is thus

ZK = *AI- z)], (13)

w~iere B* is the Laplace- Stieltjes transform of the service-time distribution.
Note the clear analogy to the ce. for GIEK11 given by Equation 7. Equa-
tion 13 (with K=b) is also the characteristic equation of the model Al/Gob/i,
where the server takes batches of size b if available and otherwise waits until
at least a customers are waiting.

It is well known that (13) has K roots inside and on the unit circle,
including the root z-4 (see, for example, Abolnikov and Dukhovny, 1987).
We show here that z=1 is simple using the usual derivative test. To do so,
we evaluate

KzK-1 = -AdB*(A - Az)/dz

at z=1 and find that

K =-A(--1/p) =Np,

or p =1, which is a contradiction. Hence z=~1 cannot be a double root.

10



When the service times are deterministic, we can further show that all
K-1 roots inside or on the unit circle are, in fact, strictly within. This follows
when we rewrite (13) as

z K = eKP(z-1)

and assume that z, has absolute value of 1 but is not precisely equal to 1.
Then we see that

1 -( )

which implies that Re(z,) = 0 and thus that z, = 1. But this is contrary to
our earlier verification that the root z = 1 is simple.

3 FURTHER RESULTS AND COMPUTA-
TIONAL EXPERIENCES

In this section, we provide what we feel is (fairly) complete evidence on the
ultimate efficacy of rootfinding in queueing. For each of the models of Section
2, we shall expand on the theory of root location and repetition, and then
computationally push each problem to its extremes to reinforce the notion
that roots can always be found for queueing models.

3.1 AI(K)1

First, we report on further computational experience with the Markovian

batch-arrival model. (We do not do likewise for the Markovian batch-service
queue since it requires the location of only one root and that is not difficult.)
We are thus working with the polynomial defined in Equation 3, and have
used the software developed by Chaudhry and Hasham (1987). The key
parameters are thus the bulk size K and the traffic intensity. We have selected
the extreme values of the traffic intensity for our experiments to be .05, .1,
.9 ,nd .95. We have also run at the value .5 as a calibration. The values
of K chosen were 10, 25, 50 and 100. The results are presented below in
Table 1 for runs performed on an 80286-based, 12 mHz AT clone with a
math coprocessor. Here, as for subsequent examples, root values have been

11



verified to be correct using the IMSL package ZANLY for analytic function
rootfinding.

Table 1
M(K)/M/1 Computations

Intensity Batch Size Run Time (min:sec)
for Roots

.50 10 0:16
25 0:21
50 0:28

100 0:40

.05 10 2:03
25 2:15
50 2:25
100 2:41

.10 10 1:04
25 1:12
50 1:19
100 1:34

.90 10 0:12
25 0:15
50 0:22
100 0:35

.95 10 0:11
25 0:15
50 0:22
100 0:34
500 15:41

3.2 G/EK/1

We know that this model has K roots inside the unit circle, and as promised,
we now show that these values are indeed unique.

Theorem 1 The roots of the characteristic equation of the G/EKIi1 model

(or, equivalently, the G(K) /M/1) are unique, with one realfor K odd and two

realfor K even.

12
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Proof: Use (7) in the form zK = O(z). Then by a geometric argument
essentially the same as that for the G/A/1 used in Figure 5.1 of Gross and
Harris (1985), it follows that there exists a unique real root in (0,1) for all
K when

03'(1) > [d(z')/dz],=j.

But this is equivalent to

>K or -<1o

which is true from ergodicity. [For K even, it is easy to see that there is an
additional real root in (-1,0).]

Next, remember from Section 2.4 that Equation 8 has a unique root inside
the unit circle for each n = 1, ... , K; call it (r,,, O,). But it is also true that
(8) has a unique (possibly non-integer) value, n,, for each pair (r,, ,). Thus
if we assume for i $ j that (r,,0,) = (r,,0,), it follows that n, = n,. But
this contradicts the uniqueness of (r, 9) for each n. Therefore all K pairs of
roots (r,, 0,) must be different. EM0l.

Because of this uniqueness, we see that the waiting-time distribution func-
tion of Section 2.4 for the line delays is a generalized hyperexponential. The
mixing constants {a,} of the CDF formulation are guaranteed to be distinct
and easily computed.

To show the ease with which G/EK/1 roots may be found, we consider ex-
amples using the most general distribution classes found in queueing, namely,
the phase types of Neuts (see Neuts, 1981), the generalized hyperexponentials
of Harris (see Botta, Harris and Marchal, 1987) and the Coxian distributions
(Cox, 1955). If the results for the most difficult problems using these kinds
of distributions (with each class known to be dense in the set of all CDFs)
are favorable, then we become much more comfortable in rootfinding efforts
using any other interarrival distributions. Two examples of each class have
been studied, and the results are presented in the following. The first PH
example is taken from Botta, Harris and Marchal and has CDF

F(t) = 1 - 1.29 3 e- 4.846t + 0.343e - 4.19 st - 0.05e - 0 959 t .

Equation 7 now becomes

13



zK = 6.266/[4.846+(l-z)]-1.439/[4.195+p(1 -z)]+.04795/[.959+±(1-z)].

We have chosen three medium to large values of K, namely, 10, 15 and 30,

remembering that it is K that determines the number of roots we need to

find. Each K has been paired up with a high and low traffic intensity. Recall

that we are to determine K roots inside the unit circle. We have used the

Cihaudhry QPACK software, with all of the roots found quickly in each case.

Our experiences are given in Table 2, and a plot is presented as Figure 1 of

the actual location of the roots over the unit circle for one of the K 15

examples (p .1).

Table 2
PH/EK/1 Computations

Batch Size Intensity Run Time (mtn:sec)
for Roots

10 46.0 .91522 0:21

10 421.0 .10000 0:21
15 70.0 .90214 0:30
15 631.5 .10000 0:28

30 140.0 .90214 0:49

30 1263.0 .10000 0:49

14
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The first GH illustration is an example offered by Botta, Harris and Mar-

chal, which turns out to be also PH, though not a mixed generalized Erlang.
This is

F(t) = 1 - 6e - 4t + 13e - 3t - 8e - 2t

with EIT) = 7/6. The resultant version of (7) which is found when the

appropriate transforms are taken is

z K = 24/[4 + p(1 - z)] - 39/[3 + j(1 - z)] + 16/[2 + /t(1 - z)].

The problem is again most challenging when K is at least fairly large. So

once more we have set K in separate runs to be 10, 15 and 30 and used both
a high and low traffic intensity for each value of K. We have again, used the
Chaudhry QPACA software and all roots were found quickly in each case,
with the results displayed in Table 3. For illustration, a plot of the actual

location of the roots over the unit circle for the final of these six examples
(with K = 30 and p = .10006) has been included as Figure 2.

Table 3

GH/EK/1 Computations
Batch Size P Intensity Run Time (min.sec)

for Roots
10 9.00 .95238 0:21
10 85.00 .10084 0:21
15 14.01 .91771 0:52
15 128.00 .10045 0:29

30 29.00 .88670 1:30

30 257.00 .10006 0:48

16
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We also experimented with a second GH distribution taken from Botta,

Harris and Marchal:

F(t) = 1 - 4e - t + 6e -2t - 3e -
3

t .

This particular one is of potential special interest since it turns out that it is
not also a phase-type CDF. The mean interarrival time 1/A is found to be 2.
We have again chosen a range of medium to large values of K, namely, 10,
15 and 30, and have used a pair of high and low traffic intensities for each.
These results are displayed in Table 4, with a plot of the X = 30, p = .1 case
presented as Figure 3.

Table 4
Second GH/EK/1 Example

Batch Size t Intensity Run Time (min:sec)
for Roots

10 5.60 .89286 0:21
10 50.00 .10000 0:21

15 8.15 .92025 0:53
15 75.00 .10000 0:28
30 16.66 .90004 1:31
30 150.0(0 .10000 0:49
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Next, we went back to a phase-type input process and used the harmonic
distribution

F(t) 1 + e - 2 8 846 .3868sin(.5897t) + .1729cos(.5897t)]

-1.1 729e- 2307f

as an illustration. Results were again excellent, with all roots found quickly
and efficiently - see Table 5.

Table 5
Second Phase-Type Example

Batch Sze P Intensity Run Time (min:sec)
for Roots

i0 20.(0 .1()000 0:25
10 2.200 .909019 0:26
15 30 000 .10000 0:35
15 3.330 .90090 0:38
30 611A.0 () .100)0) 1:03
30 6.667 .89996 1:06

The final two examples of this section are Coxian distributions, with the
requisite rational LSTs. Each of these is also neither a GH or PH distribution.
The presence of an harmonic term guarantees that the density cannot be GH,
while the fact that the df hits the t-axis at at least one point guarantees that
we do not have a phase-type problem as well. The first case here is the

density

f(t) -= IO -_ 2t 1 eo-s(t)

All of the roots were once again found quickly and efficiently - see Table 6.
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Table 6
Second PH/EK/1 Example

Batch Size P1 Intensity Run Ttme (mir.-sec)
for Roots

10 50 .28571 0:24
10 18 .79365 0:24

15 189 .11337 0:32
15 23 .93168 0:59
30 371 .11552 1:35
1 48 .89286 1:23

The concluding example is a Coxian distribution function with an atom
at the origin:

F(1) = 1 - (e-' + e2').

The resu,ts follow.

Table 7
Second Coxian Example

Batch Size tu Intensity Run Time (7r:n:sec)
for Roots

10 200 .10000 0:19
10 22 .90909 0:20
15 300 .10000 0:26

15 32 .93750 0:27
30 600 .10000 0:46

30 62 .96774 0:45

As a last test case for this example, we used a batch size of 100 and service
rate of 220 (giving a traffic intensity of .90909). The run took 2 minutes and
11 seconds, and the roots are displayed in Figure 4.
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Figure 4: Root Location, JV
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3.3 G/GEK/1

An obvious extension of the G/EK/1 model is the broader class of models
where service times are generalized Erlang(K), that is, they are found as

the convolution of K independent but not identically distributed exponential
random variables. For this very large and dense class, we can show as in the
prior model that there is exactly one real root of the characteristic equation
for K odd and two real roots for K even. Unfortunately, uniqueness may not
obtain here, but root location is not difficult anyway. We thus present the
following result on real roots as Theorem 2.

Theorem 2 The characteristic equation of the G/GEK/1 model has a unique
positive real root when K is odd and two unique real roots when K is even.

Proof: The c.e. for this model is more commonly known from the G/G/1
formulation as

A'(-s)B'(s)- 1, (14)

where A' and B* are the Laplace-Stieltjes transforms of the interarrival and
service-time distributions, respectively. From Gross and Harris (1985), for
example, we know that (14) has K roots with negative real parts. Rewrite
(14) as

1 K
A* (s) -Be( -s) - l ti t ' - (15)

1 =1

where the generalized Erlang's phase rates have been placed in ascending
order as Ill,/2, ..,/I. Then let s = 'K(1 - z) and substitute into (15). It
follows that

K
A'K(1 - z)1 fl A, - /1 K + /L KZ

s=l /1,

But we have thus effectively reduced the problem to one which is nearly iden-

tical to that of the G/EK/1 model of Equation 7, namely, an LST evaluated
at p(l - z) equal to a polynomial of degree K. The geometric argument of
Theorem 1 now goes through, with appropriate real solutions as long as the
expected number of arrivals per service time is less than 1. DOJ
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3.4 E/G/1 and AI/Gab/1

Remember from (13) that these models have characteristic equation

z b z K = B*(A - Az),

where B* is the Laplace-Stieltjes transform of the service-time distribution.
We next offer a numerical example for this model type. Consider an

EK/G/1 problem in which service is generalized Erlang. Let the GE distri-
bution have phases with mean rates t = 12, P2 = 6 and P3 = 4. Then the
equation of interest becomes

zK = 1 1 1
1 + 12A(1 - z) 1 + 6A(1 - z) 1 + 4A(1 - z)'

We have varied K in our usual way, combined with a variety of input rates
and thus traffic intensities. Roots have once more been found quite easily.
The results are offered in Table 8.

Table 8
EK!G/1 Example

Batch Size A Intensity Run Time (min:sec)
for Roots

10 2 .1 0:23
10 18 .9 0:22
15 3 .1 0:31

15 27 .9 0"31
30 6 .1 0:51
30 54 .9 0:50

4 CLOSING REMARKS

We have tried to show that rootfinding in classical queueing models is not a
difficult matter. Our view of this is based on the facts that the critical roots

typically appear singly in easily located regions and that our empirical nu-
merical experience has always been most favorable. While it is true that we
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have not examined multi-server queues in great detail, rootfinding in those
cases is generally quite similar to the single-channel models with similar in-
put and service-time-distribution combinations. There are clearly problems
whose basic characteristics are so involved that rootfinding is almost guar-
anteed to be perverse. But we believe that the models we have explored are
very comprehensive in their application and that lessons from their solution
are very useful in the effective solution of the more co'-plicated models.
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